Addition

Ofjective	Concrete	Pictorial	Abstract
Combining two parts to make a whole			$4+3=7$ Fous is a past, thece is a past and the whale is seven. $\text { Addend }+ \text { addend }=\text { mu }$ $7=4+3$
Counting on fram the ligesest number		$12+5=17$4 $?$ 6	$\begin{aligned} & 12+5=17 \\ & 17=12+5 \\ & 4+2=6 \\ & 6=4+2 \end{aligned}$

Regrauping to make 10		$\begin{aligned} & 3+9= \\ & 9+5=14 \end{aligned}$ (1) 4	$\begin{aligned} & 9+5=14 \\ & 9+1+4=14 \\ & 7+4=11 \\ & 7+3+1=11 \end{aligned}$ Y 1 am 7 , haw many mose da I need to make 10? How many mose do I need to ald on now? Can 1 use my mumber bonds? Can 1 nesraur?
$\begin{aligned} & \text { Adfing thee ingle } \\ & \text { digits } \end{aligned}$	$4+7+6=17$ Put 4 and 6 together to make 10 . Add on 7 .		$\begin{aligned} (4+7+6 & =10+7 \\ & =17 \end{aligned}$
Column a aldition Pactitioningto add without resrouning	$24+15=$ Add together the ones first then add the tens. Use the Base 10 blocks first before moving onto place value counters.		$\begin{aligned} & 24+15=? \\ & 20+10=30 \\ & 4+5=9 \\ & 30+9=39 \\ & 24 \\ & +\frac{15}{39} \end{aligned}$

Subtuaction

\begin{tabular}{|c|c|c|c|}
\hline Objective \& Conerete \& Pictorial \& Abstract \\
\hline Taking away ones \& Use physical objects, counters, cubes etc to show how objects can be taken away.

\[
6-2=4

\] \& | Cross out drawn objects to show what has been taken away. |
| :--- |
| Children to draw the concrete resources they are using and cross out. |
| Use of the bar model: | \& \[

4-3=
\]

 \\
\hline Counting back \& Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones.

\[
13-4

\] \& | $6-2$ |
| :--- |
| 연ำ | \& Six subtract four is two. \\

\hline
\end{tabular}

Find the difference

Column mubtraction without regrouping			$\begin{array}{r} 32 \\ -12 \\ \hline 20 \end{array}$
Column mubtraction with regrouping (Year 2+)	Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the place value counters Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones. Now I can subtract my ones. Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens.	Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make.	$\begin{aligned} & 836-254=582 \\ & 800 \\ & 800130 \quad 6 \\ & -20050 \quad 4 \\ & \hline 50080 \quad 2 \\ & \hline \end{aligned}$ $\begin{array}{ccc} 728 & -582=146 \\ n & 7 & 4 \\ { }^{4} 7 & 2 & 8 \\ 5 & 8 & 2 \\ \hline 1 & 4 & 6 \\ \hline \end{array}$

	Now I can Show child alongside your show wher	 take away eight tens Iren how the concret your working. Cross o re we write our new	complete my D thod links to ne numbers w unt.

Objective	Concrete	Pictorial	Abstract
Doulling		Draw pictures to show how to double a number. Double 4 is 8	
Repeated addition	Repeated grouping/repeated addition (does not have to be restricted to cubes) 3×4 or 3 lots of 4	Children to represent the practical resources in a picture e.g. $\begin{array}{lll} x x & x x & x x \\ x x & x x & x x \end{array}$ Use of a bar model for a more structured method Represent this pictorially alongside a number line e.g: $5+5+5=15$ There are 3 plates. Each plate has 2 star biscuils on. How many biscuits are there?	$\begin{gathered} 3 \times 4 \\ 4+4+4 \end{gathered}$ Abstract number line $3 \times 4=12$ factor \times factor $=$ poduct

Divinion

Objective	Conerete	Pictorial	Abstract
Shaving oljects inta groups	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. $8 \div 2=4$ This can also be done in a bar so all 4 operations have a similar structure:	$6 \div 2=3$ What's the calculation?
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.		Abstract number line $6 \div 2=3$

